Classical-Equivalent Bayesian Portfolio Optimization for Electricity Generation Planning

نویسندگان

  • Hellinton H. Takada
  • Julio Michael Stern
  • Oswaldo L. V. Costa
  • Celma O. Ribeiro
چکیده

There are several electricity generation technologies based on different sources such as wind, biomass, gas, coal, and so on. The consideration of the uncertainties associated with the future costs of such technologies is crucial for planning purposes. In the literature, the allocation of resources in the available technologies has been solved as a mean-variance optimization problem assuming knowledge of the expected values and the covariance matrix of the costs. However, in practice, they are not exactly known parameters. Consequently, the obtained optimal allocations from the mean-variance optimization are not robust to possible estimation errors of such parameters. Additionally, it is usual to have electricity generation technology specialists participating in the planning processes and, obviously, the consideration of useful prior information based on their previous experience is of utmost importance. The Bayesian models consider not only the uncertainty in the parameters, but also the prior information from the specialists. In this paper, we introduce the classical-equivalent Bayesian mean-variance optimization to solve the electricity generation planning problem using both improper and proper prior distributions for the parameters. In order to illustrate our approach, we present an application comparing the classical-equivalent Bayesian with the naive mean-variance optimal portfolios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Mixed-Integer Non-Linear Electricity Generation Expansion Planning Problem Based on Newly Improved Gravitational Search Algorithm

Electricity demand is forecasted to double in 2035, and it is vital to address the economicsof electrical energy generation for planning purposes. This study aims to examine the applicability ofGravitational Search Algorithm (GSA) and the newly improved GSA (IGSA) for optimization of themixed-integer non-linear electricity generation expansion planning (GEP) problem. The performanceindex of GEP...

متن کامل

Project Portfolio Risk Response Selection Using Bayesian Belief Networks

Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...

متن کامل

Optimal Energy Mix with Renewable Portfolio Standards in Korea

Abstract: Korea is a heavily energy-dependent country whose primary energy consumption ranks ninth in the world. However, at the same time, it promised to reduce carbon emission and planned to use more renewable energy. Thus, the objective of this study is to propose an optimal energy mix planning model in electricity generation from various energy sources, such as gas, coal, nuclear, hydro, wi...

متن کامل

A Fuzzy Multi Objective Programming Model for Power Generation and Transmission Expansion Planning Problem

The increasing consumption of electricity over time forces different countries to establishnew power plants and transmission lines. There are various crisp single-objective mathematicalmodels in the literature for the long-term power generation and transmission expansion planning tohelp the decision makers to make more reasonable decisions. But, in practice, most of the parametersassociated wit...

متن کامل

Greedy Randomized Adaptive Path Relinking

A wide spectrum of “real world” problems, such as vehicle routing, machine and crew scheduling, facility location, portfolio analysis, electricity generation planning, and communication and transportation network design, demands the use of combinatorial optimization methods. By a combinatorial optimization problem, we mean a program where a linear or nonlinear objective function must be optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2018